Министерство образования и науки Российской Федерации
 МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (государственный университет)
 ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ
 КАФЕДРА КВАНТОВОЙ РАДИОФИЗИКИ

Сидоров Павел Леонидович

«Лазерное охлаждение ионов ²⁵Mg⁺ для задач квантовых вычислений»

Выпускная квалификационная работа на степень бакалавра

Направление подготовки 010900 «Прикладные математика и физика»

Научный руководитель

Хабарова К.С.

Студент

Сидоров П.Л.

г. Москва

Содержание

Введение	3
1. Основы захвата и лазерного охлаждения ионов	5
1.1. Динамика иона в ловушке Пауля	5
1.2 Лазерное охлаждение	8
1.2.1 Взаимодействие иона с излучением	8
1.2.2 Охлаждение на боковых колебательных частотах 1	2
1.2.3 Рамановский переход1	6
1.3 Резонансный трансформатор1	9
2. Лазерная система для рамановского охлаждения и	
селективной фотоионизации ²⁵ Mg22	2
3. Экспериментальные результаты24	4
3.1 Резонансный трансформатор для ловушки Пауля 2-	4
3.2 Численное моделирование процесса рамановского охлаждения иона ${}^{25}\text{Mg}^+$ в ловушке Пауля на переходе ${}^2S_{1/2} 3,3\rangle \leftrightarrow {}^2S_{1/2} 2,2\rangle$	6
Заключение28	8
Список литературы29	9

Введение

Идея создания квантового компьютера была предложена Ричардом Фейнманом в 1959 году. Такой компьютер подчиняется законам квантовой механики и хранит информацию в виде квантовых битов (кубитов). Основное отличие от классического бита состоит в том, что кубит может находиться в суперпозиции двух состояний. Данная особенность позволит использовать квантовые вычисления, например, для факторизации больших чисел, что применяется при шифровании данных [1]. Для создания компьютера требуется найти физическую реализацию кубита и придумать способ манипуляции его состояниями [2]. На данный момент существуют следующие реализации: твердотельные квантовые точки на полупроводниках, сверхпроводящие элементы, ионы в ловушках Пауля и др. [3-5]. Каждая из них имеет свои преимущества и недостатки. Например, кубиты на основе захваченных в ловушку ионов имеют большие времена когерентности от нескольких миллисекунд до нескольких секунд, что даёт возможность производить большое число операций [6], однако одной из проблем этих кубитов является масштабируемость.

В настоящее время уже создан ионный квантовый компьютер из 5 ионных кубитов [7]. Реализация квантовой логики на ионах осуществляется с помощью управления колебательными и внутренними состояниями ионов посредством лазерных импульсов определённых длительностей и длин волн. Большинство современных квантово-логических алгоритмов невозможны без предварительного охлаждения ионов до основного колебательного состояния. Для охлаждения используют ЕІТ охлаждение, охлаждение на боковых колебательных частотах и др. [8-9]. Также обычно ионы предварительно охлаждают до допплеровского предела [10].

В нашей лаборатории идёт подготовка к охлаждению ионов магния для использования их в качестве кубитов. Среди трёх стабильных изотопов был выбран ²⁵Mg, т.к. он имеет ненулевой спин ядра, что позволяет использовать

переход между компонентами сверхтонкого расщепления состояния $2S_{1/2}$ в качестве охлаждающего. Уровни сверхтонкого расщепления связываются двумя лазерными пучками с помощью так называемого индуцированного рамановского перехода, причём ширина такого перехода может меняться экспериментально.

Хотя процентное соотношение ²⁵Mg в природе всего 10%, наличие изотопических сдвигов позволяет подбирать нужные отстройки лазеров фотоионизации и загружать в ловушку ионы только этого изотопа.

Ранее было продемонстрировано рамановское охлаждение ионов ²⁵Mg⁺ до основного колебательного состояния на переходе ${}^{2}S_{1/2}|3,3\rangle \leftrightarrow {}^{2}S_{1/2}|2,2\rangle$ со средней населённостью колебательных уровней $\bar{n} = 0.03 \pm 0.01$ и населённостью в основном состоянии 97.8 ±1.4% [11].

В данной работе рассматриваются методы охлаждения ионов до основного колебательного состояния, способы улучшения эффективности охлаждения, а также выполнено численное моделирование охлаждения ионов ²⁵Mg⁺ в условиях нашей установки.

1. Основы захвата и лазерного охлаждения ионов

1.1. Динамика иона в ловушке Пауля

В этом разделе мы рассмотрим поведение иона в радиочастотной ловушке Пауля с точки зрения классической механики.

Пусть ион находится в неоднородном переменном электрическом поле, которое задаётся потенциалом вида F(x,y,z,t):

$$F(x, y, z, t) = \underbrace{U\frac{1}{2}(\alpha x^{2} + \beta y^{2} + \gamma z^{2})}_{\textit{статический потенциал}} + \underbrace{\tilde{U}\cos(\omega_{rf}t)\frac{1}{2}(\alpha' x^{2} + \beta' y^{2} + \gamma' z^{2})}_{\textit{осциллирующий потенциал}}, (1)$$

где ω_{rf} – частота колебания потенциала.

Потенциал должен удовлетворять уравнению Лапласа $\Delta F = 0$ в любой момент времени. Это накладывает ограничения на коэффициенты:

$$\alpha + \beta + \gamma = 0,$$

$$\alpha' + \beta' + \gamma' = 0.$$
(2)

Соотношения между этими коэффициентами определяют конфигурацию ловушки, например $\alpha = \beta = -\gamma/2, \alpha' = \beta' = -\gamma'/2$ — трёхмерная квадрупольная конфигурация, $\alpha + \beta = -\gamma, \alpha' = -\beta', \gamma' = 0$ — линейная квадрупольная конфигурация.

Классическое уравнение движения иона в потенциале (1) будет иметь вид:

$$\ddot{x} = -\frac{Z/e}{m}\frac{\partial F}{\partial x} = -\frac{Z/e}{m}[U\alpha + \tilde{U}\cos(\omega_{rf}t)\alpha']x,$$
(3)

где Z | e |, m — заряд и масса иона.

Уравнение можно свести к дифференциальному уравнению Матье

$$\frac{d^2x}{d^2\xi} + [a_x + 2q_x \cos(2\xi)]x = 0$$
(4)

с помощью замены:

$$\xi = \frac{\omega_{rf}t}{2}, a_x = \frac{4Z |e|U\alpha}{m\omega_{rf}^2}, q_x = \frac{2Z |e|U\alpha'}{m\omega_{rf}^2}.$$
(5)

В силу теоремы Флоке [12] решение уравнения имеет вид:

$$x = A e^{i\beta_{\chi}\xi} \sum_{n=-\infty}^{\infty} C_{2n} e^{i2n\xi} + B e^{-i\beta_{\chi}\xi} \sum_{n=-\infty}^{\infty} C_{2n} e^{-i2n\xi},$$
(6)

где A,B – произвольные константы, определяемые из начальных условий, а C_{2n} и β_x - функции от a_x и q_x. Теперь если подставить это решение в уравнение, получим рекурсивные соотношения на коэффициенты:

$$C_{2n+2} - D_{2n}C_{2n} + C_{2n-2} = 0,$$

$$D_{2n} = [a_x - (2n + \beta_x)^2] / q_x.$$
(7)

Выражения для коэффициентов могут быть переписаны в виде непрерывных дробей:

$$C_{2n+2} = \frac{C_{2n}}{D_{2n} - \frac{1}{D_{2n+2} - \frac{1}{\dots}}},$$

$$\beta_x^2 = a_x - q_x \left(\frac{1}{D_0 - \frac{1}{D_2 - \frac{1}{\dots}}} + \frac{1}{D_0 - \frac{1}{D_{-2} - \frac{1}{\dots}}}\right).$$
(8)

Обрывая непрерывную дробь на некотором шаге, можно получить любую наперёд заданную точность определения коэффициентов. Параметр β_i может принимать как мнимые, так и действительные значения. Если β_i - мнимые, то решение (6) оказывается неустойчивым. Решение (6) имеет так называемые области стабильности в плоскостях $a_i - q_i$, когда параметр β_i лежит в пределах от 0 до 1, от 1 до 2, от 2 до 3. На практике обычно используется только первая область стабильности. На рис. 1 показаны области стабильности для цилиндрически симметричной ловушки (а) и для линейной (б).

Рис.1: Области стабильности для ловушек Пауля (а) Для цилиндрически симметричной с удержанием по трём осям ($\alpha = \beta = -\gamma/2, \alpha' = \beta' = -\gamma'/2$) и (б) для линейной ($\alpha + \beta = -\gamma, \alpha' = -\beta', \gamma' = 0$)

Теперь запишем в первом приближении решение уравнений (7) в случае ($|a_x|, q_x^2$) << 1, полагая $C_{\pm 4} \approx 0$. С начальными условиями А=В получим:

$$\beta_{x} \approx \sqrt{a_{x} + q_{x}^{2}/2},$$

$$x(t) \approx 2AC_{0} \cos(\beta_{x} \frac{\omega_{rf}}{2} t) [1 - \frac{q_{x}}{2} \cos(\omega_{rf} t)].$$
(9)

То есть движение иона представляет собой суперпозицию осцилляций на частоте $v = \beta_x \frac{\omega_{rf}}{2} t \ll \omega_{rf}$, называемых секулярным движением, и колебаний с частотой приложенного поля — микродвижений. Эти колебания имеют гораздо меньшую амплитуду и отстают по фазе на π .

1.2 Лазерное охлаждение

1.2.1 Взаимодействие иона с излучением

Одна из простейших модельных систем для описания лазерного охлаждения – это одиночный ион в ловушке, имеющий дипольный переход, возбуждаемый лазером с длиной волны, близкой к резонансной.

Рассмотрим электронный переход с резонансной частотой ω_0 , возбуждаемый монохроматическим излучением с частотой ω и волновым вектором \vec{k} . Будем считать, что ион находится во внешнем электрическом поле $\vec{\mathcal{E}} = \mathcal{E}_0 \vec{e} \cos(\omega t - kx + \phi)$, где \mathcal{E}_0, \vec{e} - амплитуда и единичный вектор поляризации. Для простоты направим вектор \vec{k} вдоль оси х.

Полный гамильтониан иона в ловушке под воздействием излучения имеет вид $\hat{H} = \hat{H}_m + \hat{H}_e + \hat{H}_i$, где \hat{H}_m описывает движение иона в ловушке в отсутствии внешних полей, \hat{H}_m - гамильтониан иона, как двухуровневой квантовой системы и \hat{H}_i - гамильтониан взаимодействия иона с излучением.

$$\hat{H}_{m} = \frac{\hat{p}^{2}}{2M} + \frac{1}{2}MW(t)\hat{x}^{2},$$
(10)

где $W(t) = \frac{\omega_{rf}^2}{4} [a_x + 2q_x \cos(2\xi)]$ - зависящий от времени потенциал (см. уравнение (4)),

$$\hat{H}_e = \hbar \frac{\omega_0}{2} \hat{\sigma}_z \tag{11}$$

Здесь и далее $\hat{\sigma}_x, \hat{\sigma}_y, \hat{\sigma}_z$ – матрицы Паули и $\hat{\sigma}_{\pm} = 1/2(\sigma_x \pm i\sigma_y)$.

Взаимодействие иона с излучением в дипольном приближении записывается в виде $\hat{H}_i = -\hat{d} \cdot \vec{\mathcal{E}}$, что может быть переписано следующим образом:

$$\hat{H}_{i} = (\hbar/2)\Omega\hat{\sigma}_{x}\left[e^{-i(k\hat{x}_{s}-\omega t+\varphi)} + e^{-i(k\hat{x}_{s}-\omega t+\varphi)}\right],$$
(12)

где $\Omega = \left| \langle g | \hat{d} | e \rangle \right| \mathcal{E}_0 / \hbar$ - частота Раби.

Для анализа взаимодействия иона с излучением удобно перейти в представление взаимодействия, записав гамильтониан в виде

$$\hat{H}_{int} = \exp[(i/\hbar)\hat{H}_{0}t]\hat{H}_{i}\exp[-(i/\hbar)\hat{H}_{0}t] = (\hbar/2)\Omega(\sigma_{+}e^{i\omega_{0}t} + \sigma_{-}e^{-i\omega_{0}t})e^{(i/\hbar)H_{0}t} \times [e^{i(k\hat{x}-\omega t+\varphi)} + e^{-i(k\hat{x}-\omega t+\varphi)}]e^{-(i/\hbar)\hat{H}_{0}t},$$

где $\hat{H}_0 = \hat{H}_m + \hat{H}_e$.

Выражение $e^{(i/\hbar)\hat{H}_0 t} [e^{i(k\hat{x}-\omega t+\phi)} + e^{-i(k\hat{x}-\omega t+\phi)}]e^{-(i/\hbar)\hat{H}_0 t}$ легко упрощается, если заметить, что оно совпадает с представлением Гайзенберга оператора $e^{i(k\hat{x}-\omega t+\phi)} + e^{-i(k\hat{x}-\omega t+\phi)}$ с гамильтонианом \hat{H}_0 . Тогда если учесть, что оператор \hat{x} в представлении Гайзенберга имеет вид [13]

$$k\hat{x}(t) = \eta[\hat{a}u^*(t) + \hat{a}^+u(t)],$$

то в приближении вращающейся волны гамильтониан перепишется следующим образом:

$$\hat{H}_{\rm int} = (\hbar/2)\Omega\hat{\sigma}_{+} \exp(i\{\phi + \eta[\hat{a}u^{*}(t) + \hat{a}^{+}u(t)] - \delta t\}) + 3.c.$$
(13)

Здесь $\eta = \sqrt{k^2 \hbar/(2mv)}$ (14) - параметр Лэмба-Дике, $\delta = \omega - \omega_0$ - отстройка, \hat{a}, \hat{a}^+ - операторы рождения и уничтожения и

$$u(t) = e^{i\beta_x \omega_{rf} t/2} \sum_{n=-\infty}^{\infty} C_{2n} e^{in\omega_{rf} t}$$

Если разложить в ряд экспоненту в гамильтониане

$$\exp(i\{\varphi + \eta[\hat{a}u^{*}(t) + \hat{a}^{+}u(t)] - \delta t\}) = e^{i(\varphi - \delta t)} \sum_{m=0}^{\infty} \frac{(i\eta)^{m}}{m!} \times \left\{ \hat{a}e^{-i\beta_{x}\omega_{\eta}t} \sum_{n=-\infty}^{\infty} C_{2n}^{*}e^{-in\omega_{\eta}t} + \Im.c. \right\}^{m},$$

то легко заметить, что при отстройке

$$\delta = (l' + l\beta_x)\omega_{rf},\tag{15}$$

где l и l' - целые и $l \neq 0$, если $l' \neq 0$,

два члена гамильтониана будут осциллировать медленнее, чем остальные, вкладом которых можно пренебречь в приближении вращающейся волны. Если рассматривать движение иона с точки зрения классической механики, то есть как суперпозицию микродвижения и секулярных колебаний, то в системе отсчёта, связанной с ионом, монохроматическое излучение будет фазово-модулированным с этими частотами вследствие эффекта Доплера. Это приводит к тому, что излучение с отстройкой (15) может вызвать резонансный переход.

Подставляя разложение экспоненты в (13) и опуская быстро осциллирующие слагаемые, можно получить конечный вид гамильтониана. Однако в реальных ловушках чаще всего выполняется условие $\eta <<1$, $(|a_x|, q_x^2) <<1$. Часто также рассматривают только отстройки с l' = 0. В этом приближении $C_0 = (1 + q_x/2)^{-1}$. В таком случае гамильтониан (13) упрощается:

 $\hat{H}_{\text{int}} = (\hbar/2)\Omega_0 \sigma_+ \exp\{i\eta(\hat{a}e^{-i\nu t} + \hat{a}^+ e^{i\nu t})\}e^{i(\varphi - \delta t)} + \text{э.с.},$ (16) где $\Omega_0 = \Omega/(1 + q_x/2).$

Заметим, что если разложить экспоненту в (16) в ряд по η , гамильтониан будет представлять собой комбинации из операторов $\sigma_{\pm}(\hat{a}^{+})^{p}\hat{a}^{q}e^{-i(p-q)vt}e^{\pm i(\phi-\delta)}$, где р и q – неотрицательные целые числа. Тогда при $\delta = (l-m)v = sv$ в приближении вращающейся волны быстро осциллирующими членами можно пренебречь. В итоге останутся только

слагаемые вида $\sigma_{\pm}(\hat{a}^+)^p \hat{a}^q$, где p-q=s, которые приводят к резонансным переходам между состояниями $|g\rangle|n\rangle$ и $|e\rangle|n+s\rangle$. Можно ввести частоты Раби для этих переходов следующим образом:

$$\Omega_{n,n+s} = \Omega_{n+s,n} = \Omega_0 \left| \left\langle n+s \right| e^{i\eta(a+a^+)} \left| n \right\rangle \right| = \Omega_0 e^{-\eta^2/2} \eta^{|s|} \sqrt{\frac{n_{<}!}{n_{>}!}} L_{n<}^{|s|}(\eta^2), \quad (17)$$

где $n_{<}(n_{>})$ – меньший (больший) номер из n + s и n, а $L^{n}_{\alpha}(x)$ - обобщённый полином Лагерра.

Гамильтониан и частоты Раби можно упростить, если взаимодействие иона с излучением производится в режиме Лэмба-Дике, то есть когда характерный размер волновой функции иона много меньше, чем 1/k. Это эквивалентно выполнению соотношения $\eta \sqrt{\langle (a+a^+)^2 \rangle} <<1$, то есть когда заселены колебательные состояния, удовлетворяющие неравенству $(2n+1)^{1/2}\eta <<1$. Тогда в (16) разложим экспоненту и пренебрежём степенями η выше первой:

$$\hat{H}_{LD} = (\hbar/2)\Omega_0 \sigma_+ \{1 + i\eta (\hat{a}e^{-i\nu t} + \hat{a}^+ e^{i\nu t})\}e^{i(\phi - \delta t)} + 3.c.$$
(18)
Рассмотрим три важных случая: $\delta = 0, \pm \nu$.

При $\delta = 0$ гамильтониан будет иметь вид

$$H_{car} = (\hbar/2)\Omega_0(\sigma_+ e^{i\varphi} + \sigma_- e^{-i\varphi}),$$

что приводит к резонансным переходам $|n\rangle|g\rangle$ \leftrightarrow $|n\rangle|e\rangle$ с частотой Раби Ω_0 . При $\delta = +\nu$ имеем

$$\hat{H}_{bsb} = (\hbar/2)\Omega_0 \eta (\hat{a}^+ \sigma_+ e^{i\varphi} + \hat{a}\sigma_- e^{-i\varphi}),$$

что соответствует переходу $|n\rangle|g\rangle \leftrightarrow |n+1\rangle|e\rangle$ с частотой Раби $\Omega_{n,n+1} = \Omega_0 \sqrt{n+1}\eta$. При $\delta = -\nu$ гамильтониан преобразуется к виду

$$\hat{H}_{rsb} = (\hbar/2)\Omega_0\eta(\hat{a}\sigma_+e^{i\varphi} + \hat{a}^+\sigma_-e^{-i\varphi}),$$

что отвечает переходу $|n\rangle|g\rangle \leftrightarrow |n-1\rangle|e\rangle$ с частотой Раби $\Omega_{n,n-1} = \Omega_0 \sqrt{n\eta}$. Стоит отметить, что последний гамильтониан представляет большой интерес для квантовой оптики и эквивалентен т.н. гамильтониану Джейнса-Камминга и служит хорошей моделью для описания манипуляций с ионами в ловушке при реализации квантовой логики [14].

1.2.2 Охлаждение на боковых колебательных частотах

Пренебрежём спонтанным распадом, полагая что $\Gamma << \Omega_{n,n+1} << v$. Тогда резонансы с изменением колебательного уровня на 1 разрешимы. Настраивая лазер на резонансный переход $|n\rangle|g\rangle \leftrightarrow |n+l\rangle|e\rangle$ (переход на боковых частотах), то есть полагая $\delta \approx lv$, можно управлять электронными и колебательными состояниями иона и осуществлять переходы с желаемым колебательного изменением квантового Этот факт числа. можно использовать при охлаждении иона до основного колебательного состояния. Пусть ион в начальный момент времени находится в основном состоянии. Для простоты положим, что заселено только колебательное состояние с n = 1и взаимодействие иона с излучением производится в режиме Лэмба-Дике. Настроим лазерный импульс на резонансный переход $|1\rangle|g\rangle$ \leftrightarrow $|0\rangle|e\rangle$, тогда через некоторое время можно ожидать, что ион будет находиться в состоянии $|0\rangle|e\rangle$. Если теперь осуществить оптическую накачку [15] с помощью дополнительного лазерного импульса на уровень $|g\rangle$ через некоторый промежуточный уровень $|e1\rangle$, будет преимущественно заселено состояние $|0\rangle|g\rangle$, т.к. в режиме Лэмба-Дике спонтанные переходы с изменением колебательного числа подавлены. Таким образом, ион охлаждён до основного колебательного состояния. Теперь рассмотрим количественное описание.

Рассмотрим эволюцию волновой функции иона под действием излучения, описываемую гамильтонианом $\hat{H}_{\rm int}$. Волновая функция иона

$$\left|\psi(t)\right\rangle = \sum_{n=0}^{\infty} c_{n,g} \left|g\right\rangle \left|n\right\rangle + \sum_{n=0}^{\infty} c_{n,e} \left|e\right\rangle \left|n\right\rangle$$

представляет собой линейную комбинацию из тензорных произведений $|e\rangle|n\rangle$ и $|g\rangle|n\rangle$:

$$\left|\psi(t)\right\rangle = \sum_{n=0}^{\infty} c_{n,g} \left|g\right\rangle \left|n\right\rangle + \sum_{n=0}^{\infty} c_{n,e} \left|e\right\rangle \left|n\right\rangle$$
(19)

Её эволюция определяется уравнением Шрёдингера:

$$i\hbar \frac{\partial |\psi(t)\rangle}{\partial t} = \hat{H}_{int} |\psi(t)\rangle.$$

Подставив разложение волновой функции (19), получим пары уравнений на коэффициенты $c_{n,g}$, $c_{n,e}$ (фазу $\phi = 0$ электромагнитного поля при t=0 положим равной 0):

$$\dot{c}_{n,g} = -i^{(1-|l|)} (\Omega_{n+l,n}t/2) c_{n+l,e},$$
$$\dot{c}_{n+l,e} = -i^{(1+|l|)} (\Omega_{n+l,n}t/2) c_{n,g}.$$

Для лазерного охлаждения обычно применяют переходы с l = -1, -2. В начальный момент времени ион находился в основном электронном состоянии, поэтому $c_{n+l,e}(0) = 0$. Также обычно предварительно ион охлаждают до доплеровского предела, снизив изначальные населённости уровней. Положим, что преимущественно заселены колебательные состояния, удовлетворяющие неравенству $(2n+1)^{1/2}\eta \ll 1$ (режим Лэмба-Дике). Решение системы с заданными начальными условиями определяет завсисимость коэффициентов от времени:

$$c_{n,g} = c_{n,g}(0) * \cos(\Omega_{n+l,n}t/2),$$

$$c_{n+l,e} = c_{n,g}(0) * \sin(\Omega_{n+l,n}t/2).$$

Можно записать эти уравнения в другом виде, если ввести вероятности заселённости уровней $P_{n+l,e}, P_{n,g}$ как квадраты модулей коэффициентов :

$$P_{n,g} = P_{n,g} (1 - \sin^2(\Omega_{n-1,n}t/2)),$$

$$P_{n-1,e} = P_{n,g} \sin^2(\Omega_{n-1,n}t/2).$$
(20)

Рис.2: Схема охлаждения на боковых колебательных частотах

Выражение (20) определяет населённости уровней после приложения лазерного импульса длительностью t. Теперь если приложить другой лазерный импульс с частотой, равной $\frac{E_{e1} - E_e}{\hbar}$, где E_{e1} - энергия некоторого уровня $|e1\rangle$ выше уровня $|e\rangle$ (Рис. 2), можно осуществлять резонансные переходы между уровнями $|e\rangle$ и $|e1\rangle$. Далее считаем, что населённости уровней $|e1\rangle$ и $|e\rangle$ обнуляются через некоторое время вследствие спонтанного распада на уровни (метод оптической накачки). Предполагается, что обмен населённостями происходит только между соответствующими колебательными уровнями. Тогда к данному моменту будут заняты только уровни $|g\rangle|n\rangle$ и их населённости определяются следующим выражением:

$$P_n = P_n(0)(1 - \sin^2(\Omega_{n,n-1}\tau/2)) + P_{n+1}(0)\sin^2(\Omega_{n+1,n}\tau/2).$$
(21)

Здесь τ - длительность первого лазерного импульса. Из данного выражения следует, что среднее колебательное число $\bar{n} = \sum_{n=0}^{\infty} n P_n$ уменьшается после данных манипуляций, что и приводит к охлаждению иона.

Стоит заметить, что если на начальных этапах условие Лэмба-Дике не выполняется, то есть населено много колебательных уровней, возбуждают также переходы с l = -2. Выражение (21) имеет тот же вид с заменой $1 \rightarrow 2$.

Частоты Раби для больших уровней перестают монотонно зависеть от n, как в режиме Лэмба-Дике, и более того, обращаются в ноль некоторых точках (рис. 3). Чтобы избежать большого скопления населённостей вблизи этих точек и оптимизировать процесс охлаждения, применяют чередование переходов с l = -2 и с l = -1.

Невыполнение предположений, использованных при получении формулы (21) приводит к нагреванию иона, а именно нерезонансное возбуждение уровней, спонтанное излучение С изменением числа колебательных квантов и ненулевая населённость уровня $|e\rangle$ после перекачивающего импульса.

Выражение (21) используется для симуляции охлаждения и подбора оптимальной стратегии для проведения эксперимента [16-17]. В данной работе это выражение также было использовано для симуляции охлаждения ионов магния.

Как было отмечено выше, такой охлаждение методом боковой полосы возможен только в случае, если резонансы с изменением колебательного числа разрешимы ($\Gamma \ll \nu$), что неверно для большинства наблюдаемых переходов (например, для магния $\Gamma = 2\pi \times 41.3$ МГц, а характерные секулярные частоты порядка единиц и десятков МГц). Поэтому для реализации данного метода используют, например, квадрупольные переходы с узкими ширинами линий [18] или так называемые индуцированные рамановские переходы. Последний тип перехода будет подробно рассмотрен в следующем разделе.

Рис.3: Зависимость частот Раби от п при параметре Лэмба-Дике, равном 0.5

1.2.3 Рамановский переход

Рассмотрим трёхуровневую квантовую систему (Рис.4) под воздействием двух лазерных пучков, один из которых нерезонансно возбуждает переход между уровнями $|1\rangle$ и $|2\rangle$, а второй – между уровнями $|2\rangle$ и $|3\rangle$, тогда, если отстройка пучков от резонанса много больше ширины уровня $|2\rangle$, возможен резонансный переход между уровнями $|1\rangle$ и $|3\rangle$. Такие переходы называют индуцированными рамановскими переходами. Преимущество состоит в том, что частота Раби и ширина такого перехода зависят от отстройки лазерных пучков, и, подбирая отстройку во время эксперимента, можно добиться требуемой ширины ЛИНИИ. Поэтому рамановские переходы часто используются при охлаждении методом боковой полосы.

Рис.4: Рамановский переход, Ω_{P,Ω_S} - резонансные частоты Раби между переходами $|1\rangle \rightarrow |2\rangle$ и $|2\rangle \rightarrow |3\rangle$ соответственно

Гамильтониан такой системы состоит из двух частей: \hat{H}_0 – невозмущённого гамильтониана, определяющего энергетические уровни системы, и возмущения $\hat{V} = -\hat{d} \cdot \vec{\mathcal{E}}$. Тогда в представлении взаимодействия в приближении вращающейся волны гамильтониан будет иметь вид: [19]

$$\hat{H} = \frac{\hbar}{2} \begin{pmatrix} 0 & \Omega_P & 0 \\ \Omega_P & 2\Delta & \Omega_S \\ 0 & \Omega_S & 2\delta \end{pmatrix},$$

где δ - отстройка от двухфотонного резонанса, Ω_P , Ω_S - резонансные частоты Раби переходов $|1\rangle \rightarrow |2\rangle$ и $|2\rangle \rightarrow |3\rangle$ соответственно.

Эволюция системы определяется уравнением Шрёдингера $i\hbar \frac{\partial |\psi\rangle}{\partial t} = \hat{H} |\psi\rangle$, где $|\psi(t)\rangle = C_1(t) |\psi_1\rangle + C_2(t) |\psi_2\rangle + C_3 |\psi_3\rangle$ - разложение волновой функции системы по базису из собственных векторов гамильтониана \hat{H}_0 . Тогда имеем систему линейных дифференциальных уравнений для амплитуд вероятностей:

$$i\dot{C}_{1} = \frac{1}{2}\Omega_{P}C_{2},$$

$$i\dot{C}_{2} = \frac{1}{2}\Omega_{P}C_{1} + \Delta C_{2} + \frac{1}{2}\Omega_{S}C_{3},$$

$$i\dot{C}_{3} = \frac{1}{2}\Omega_{S}C_{2} + \delta C_{3}.$$

Предполагается, что отстройка лазерных пучков много больше характерных частот в системе, поэтому коэффициент C_2 быстро осциллирует, так что \dot{C}_2 в среднем можно положить равным нулю. Тогда система преобразуется к эффективной двухуровневой системе:

$$\begin{cases} i\dot{C}_1 = \frac{\Omega_P}{4\Delta}(\Omega_P C_1 + \Omega_S C_3), \\ i\dot{C}_3 = -\delta C_3 + \frac{\Omega_S}{4\Delta}(\Omega_P C_1 + \Omega_S C_3), \end{cases}$$

где эффективный гамильтониан – матрица 2х2:

$$H_{eff} = \frac{1}{4} \begin{pmatrix} \frac{\Omega_P^2}{\Delta} & \frac{\Omega_P \Omega_S}{\Delta} \\ \frac{\Omega_P \Omega_S}{\Delta} & \frac{\Omega_S^2}{\Delta} - 4\delta \end{pmatrix}$$

Диагональные члены гамильтониана связаны со сдвигом энергетических уровней $|1\rangle$ и $|3\rangle$ из-за эффекта Штарка, а недиагональные – определяют частоту Раби рамановского перехода. Решение эффективной системы даёт зависимость населённостей уровней $|1\rangle$ и $|3\rangle$ от времени:

$$\begin{cases} |C_1|^2 = 1 - \Lambda \cdot \sin^2(\frac{\Omega_0}{2}t), \\ |C_3|^2 = \Lambda \cdot \sin^2(\frac{\Omega_0}{2}t). \end{cases}$$

Здесь $\Lambda = \frac{\Omega_R^2}{\Omega_0^2}$, $\Omega_0 = \sqrt{\Omega_R^2 + \delta^2}$ - обобщённая частота Раби, а $\Omega_R = \frac{\Omega_P \Omega_S}{2\Delta}$ -

резонансная частота Раби для рамановского перехода. Ширина перехода

может быть определена, как диапазон отстроек δ , при котором амплитуда осцилляций Раби больше, чем $\frac{1}{2}$, т.е. равна $2\Omega_R$.

Таким образом, приведённая теория в разделах 2.1 и 2.2 может быть применена к рамановскому переходу с частотой Раби Ω_R и шириной $2\Omega_R$.

Также можно показать, что \vec{k} и ω в обозначениях раздела 1.2 заменяется на $\vec{k_1} - \vec{k_2}$ и $\omega_1 - \omega_2$ соответственно, где $\vec{k_1}, \vec{k_2}$ и ω_1, ω_2 - волновые вектора и частоты рамановских пучков.

1.3 Резонансный трансформатор

Эффективность охлаждения ионов до основного колебательного состояния возрастает при увеличении секулярных частот, т.к. параметр Лэмба-Дике (14) уменьшается и охлаждение в режиме Лэмба-Дике становится возможным для большего диапазона колебательных уровней *n*. Более того, после допплеровского охлаждения среднее колебательное число $\overline{n} = \Gamma/2\nu$, так что увеличение частоты позволит уменьшить изначальное число квантов перед рамановским охлаждением. Из выражений (5) и (9) следует, что при увеличении амплитуды радиочастотного напряжения, подаваемого на ловушку, увеличивается также и частота колебания иона. Для eë увеличения обычно используют резонансные трансформаторы, амплитудно-частотную характеристику которых можно сделать достаточно узкой, что позволит понизить уровень шумов источника и уменьшить аномальный нагрев иона из-за флуктуаций параметров ловушки [20].

Для частот порядка нескольких десятков МГц одним из наиболее удобных типов резонансных трансформаторов является "helical resonator". Такой резонатор состоит из цилиндрического проводящего экрана, катушки индуктивности внутри и антенны, которая обычно крепится на крышку (рис. 5). На антенну подаётся сигнал с источника радиочастотного напряжения, внутренняя катушка вместе с ловушкой образуют резонансный LCR контур. Связь между контурами возникает благодаря взаимной индукции между антенной И внутренней катушкой резонатора. Заметим, что для максимизации мощности, переданной от источника к нагрузке (к LCR ловушкой), необходимо выполнить условие согласования контуру с импедансов. Из этого условия в дальнейшем будет получено выражение, определяющее длину катушки по известной резонансной частоте.

Рис. 5: Схема резонатора и электрическая схема установки. L_a – индуктивность антенны, Z_0 – импеданс источника, R_c – активное сопротивление внутренней катушки резонатора, L_c – индуктивность внутренней катушки, L_c - индуктивность внутренней катушки, C_c – собственная ёмкость катушки, R_j – сопротивления соединения между катушкой и экраном, C_s – ёмкость между катушкой и экраном, R_s – сопротивление экрана, C_w – ёмкость проводов ловушки, C_t и R_t – ёмкость и сопротивление ловушки.

Индуктивность LCR контура определяется индуктивностью внутренней катушки резонатора L_c , в активное сопротивление дают вклады: R_c - сопротивление внутренней катушки, R_j - сопротивление соединения между катушкой и экраном, R_s - сопротивление экрана, R_t - сопротивление ловушки; ёмкость контура определяется собственной ёмкостью катушки C_c , ёмкостью между экраном и катушкой C_s , ёмкостью проводов ловушки C_w и ёмкостью ловушки C_t . Электрическая схема установки показана на рис. 5

Обозначим ток, текущий в левом контуре, за I_1 , а в правом – за I_2 , тогда, учитывая взаимную индуктивность катушек, запишем падение напряжения на антенне:

$$U_1 = i\omega L_a I_1 + i\omega M I_2, \qquad (22)$$

где $M = k \sqrt{L_a L_c}$ - коэффициент взаимной индукции катушек. Здесь k - коэффициент связи катушек и $-1 \le k \le 1$. Обозначим импеданс части правого контура, не включающей реактивное сопротивление катушки за Z_L . Полное падение напряжения на замкнутом контуре равно нулю, так что верно следующее:

$$-I_2 Z_L = i\omega L_c I_2 + i\omega M I_1.$$
⁽²³⁾

Выражая из (21) и (22) токи, можно получить, что

$$Z_{eff} = \frac{U_1}{I_1} = i\omega L_a + \frac{\omega^2 k^2 L_c L_a}{i\omega L_c + Z_L}$$
(24)

– т.н. эффективный импеданс, возникающий в цепи источника из-за присутствия LCR контура. Для максимизации мощности, выделяющейся на нагрузке, необходимо соблюсти условие согласования импедансов: $Z_{eff} = Z_0$, т.е.

$$\begin{cases} \operatorname{Re}(Z_{eff}) = Z_0, \\ \operatorname{Im}(Z_{eff}) = 0. \end{cases}$$
(25)

Величины C_c , C_s , L_c зависят от размеров катушки и экрана и могут быть вычислены с помощью эмпирических формул, где учитывается, что индуктивность катушки внутри экрана несколько меняется по сравнению с одиночной катушкой [21]. Тогда подставив требуемую резонансную частоту в (24) и выразив параметры системы через размеры резонатора, получим систему из двух уравнений, из которых численно можно найти длину катушки и коэффициент взаимной индукции. В данной работе это использовалось для проектирования резонатора для нашей установки.

2. Лазерная система для рамановского охлаждения и селективной фотоионизации ²⁵Mg

получения ионов ²⁵Мg⁺ используется метод селективной Для фотоионизации. Сначала лазерным излучением возбуждается переход $3s^{2} {}^{1}S_{0} \leftrightarrow 3s3p {}^{1}P_{1}$ с длиной волны ≈ 285 нм и далее из состояния $3s3p {}^{1}P_{1}$ также возможно поглощение фотона и переход электрона в непрерывный спектр. Стоит отметить, что длина волны рамановских импульсов, использующихся для охлаждения также 285 нм, что позволяет использовать данную лазерную систему для формирования рамановских пучков. В основе лазерной селективной фотоионизации системы для лежит полупроводниковый лазер с длиной волны 1140 нм и мощностью 80 мВт. В дальнейшем в установку будут добавлены два каскада удвоения частоты, спроектированные в нашей лаборатории.

Т.к. эффективность процесса генерации четвёртой гармоники около
1%, в системе был использован рупорный усилитель (TA – tapered amplifier).
Это полупроводниковое устройство, предназначенное для увеличения
мощности: при входной мощности 70 мВт выходная мощность достигает 1

Вт. Т.к. усилитель чувствителен к заводу излучения, на входе расположена асферическая линза, юстируемая по трём степеням свободы. Также для предотвращения нагрева и разъюстировки устройства предусмотрена температурная стабилизация.

Для предотвращения повреждения усилителя в результате обратного отражения пучка установлен оптический изолятор. Ещё один изолятор препятствует появлению паразитных интерферометров при отражении пучка обратно в лазер.

Рис. 6. Фотография лазерной системы: 1 – полупроводниковый лазер; 2,14 – оптические изоляторы; 3,10 – пластинки λ/2; 4,6,7,9,11,12 – зеркала; 5 – поляризационный кубик; 8 – оптическое волокно; 13 - ТА

Как видно на рис. 6, на оптический стол установлен также поляризационный кубик для деления пучка, что позволяет направить часть излучения в оптическое волокно. Направление пучков меняется с помощью нескольких микрометрических зеркал, что обеспечивает точный завод лазерного пучка в оптоволокно. На данный момент оптоволокно отъюстировано, и по сигналу на волномере можно контролировать одномодовый режим работы полупроводникового лазера и проводить его стабилизацию.

3. Экспериментальные результаты

3.1 Резонансный трансформатор для ловушки Пауля

С целью уменьшить шумы источника радиочастотного потенциала и увеличить амплитуду колебаний, был спроектирован резонансный трансформатор ("Helical resonator"). При расчёте в уравнениях (25) использовалась резонансная частота 18 МГц (частота подаваемого на ловушку потенциала), остальные параметры подобрались исходя ИЗ компактизации установки, максимизации достигаемого усиления И подавления наводок на другие приборы, создаваемых резонатором [22]. В качестве материала выбрана медь для уменьшения потерь и повышения добротности. Для согласования импедансов предусмотрена возможность перемещения и фиксации крышки с прикрепленной к ней антенной относительно резонатора.

Длина корпуса (экрана)	13.5 см
Диаметр экрана	8.9 см
Длина катушки	9.1 см
Диаметр катушки	4.5 см
Диаметр провода катушки	0.3 см
Шаг намотки	0.7 см

Рис. 7: Резонансный трансформатор для ловушки Пауля в разобранном виде. Для фиксации крышки с антенной использовался силовой хомут. Антенна намотана из медной проволоки диаметром 2 мм и имеет два витка.

Также выполнены измерения резонансной частоты и добротности резонатора на спектроанализаторе с использованием трекинг-генератора. Ловушка имитировалась конденсатором с ёмкостью 18 пФ. Добротность вычислялась по ширине пика отражённого сигнала:

$$Q = \frac{\omega_0}{\Delta \omega}$$

Здесь $\omega_0 = 19.7 \text{ M}\Gamma_{\text{U}} -$ измеренная резонансная частота, и $\Delta \omega$ – ширина пика отражённого сигнала на высоте $1/\sqrt{2}$ от высоты максимума. Добротность оказалась равной

$$Q = 895$$

При этом коэффициент усиления напряжения $\eta = 89$, что выше в 2 раза по сравнению с коэффициентом усиления трансформатора, использовавшегося на нашей ловушке ранее.

3.2 Численное моделирование процесса рамановского охлаждения иона ${}^{25}\text{Mg}^+$ в ловушке Пауля на переходе ${}^{2}S_{1/2}|3,3\rangle \leftrightarrow {}^{2}S_{1/2}|2,2\rangle$

Рис. 8: Схема уровней иона ²⁵Mg⁺. R1, R2 – рамановские пучки с длиной волны около 285 нм, Repump – перекачивающий импульс, DC – импульс доплеровского охлаждения

В лаборатории идёт подготовка к охлаждению ионов ²⁵Mg⁺ до основного колебательного состояния и для проведения эксперимента необходимо оптимизировать параметры лазерных импульсов, поэтому была проведено численное моделирование данного процесса.

Для симуляции использовалось выражение (21). Сначала было произведено вычисление параметров Лэмба-Дике для нашей ловушки Пауля. Секулярные частоты ловушки были измерены ранее: $\omega_{ax} = 51 K \Gamma u$ и $\omega_{rad} = 1 M \Gamma u$. Волновые векторы рамановских пучков предполагались перпендикулярными друг другу, длина волны 285 нм (рис. 8). Для радиальной частоты получаем $\eta = 0.45$, для аксиальных колебаний – $\eta \approx 2$. Таким образом, режим Лэмба-Дике возможно реализовать только при охлаждении радиальной степени свободы.

Предел доплеровского охлаждения на нашей установке около 1 мК, что в терминах среднего колебательного числа даёт $\overline{n} = 20.9$. Предполагается, что после доплеровского охлаждения населённости

колебательных уровней распределены по Больцману, поэтому первоначальное распределение для моделирования задаётся выражением:

$$P_n = \frac{\overline{n}}{\left(\overline{n}+1\right)^{n+1}}.$$

Для оптимизации процесса охлаждения менялись как длительности и отстройки ($\delta = -v, -2v$). Выражение (21) позволяет импульсов, так получать новое распределение населённостей колебательных уровней после лазерного импульса. Поэтому после каждого импульса полученная населённость использовалась как начальная для следующего импульса. Симуляция проводилась в следующем порядке: один цикл охлаждения состоит из 25 импульсов с отстройкой -2v и из 15 импульсов с отстройкой -*v*, цикл повторён три раза с длительностями 14.3 мкс, 13.7 мкс, 14.3 мкс, 11.3 мкс. 10.4 мкс. 11.3 мкс соответственно. После ланной последовательности импульсов среднее колебательное число $\bar{n} = 0.06$ и населённость основного состояния 99.8%.

Таким образом, симуляция показывает, что в приближении отсутствия механизмов нагрева ловушка Пауля в нашей лаборатории позволяет охладить ион 25 Mg⁺ с $\bar{n} = 20.9$ до $\bar{n} = 0.06$ за 120 импульсов с населённостью основного состояния 99.8%. Начальное и конечное распределение показаны на рис. 9

Рис.9: Начальное распределение ($\bar{n} = 20.9$) населённостей колебательных уровней иона и распределение после охлаждения ($\bar{n} = 0.06$).

Заключение

В данной работе был описан метод лазерного охлаждения ионов на боковых колебательных частотах, и в частности, его реализация на индуцированном рамановском переходе ${}^{2}S_{1/2}|3,3\rangle \leftrightarrow {}^{2}S_{1/2}|2,2\rangle$ иона ${}^{25}Mg^{+}$. В результате выполнено численное моделирование процесса рамановского охлаждения иона ${}^{25}Mg^{+}$, подобрана стратегия охлаждения и длительности импульсов. Произведена симуляция охлаждения в приближении отсутствия механизмов нагрева с $\bar{n} = 20.9$ до $\bar{n} = 0.06$ за 120 лазерных импульсов с населённостью в основном колебательном состоянии 99.8%.

Также с целью уменьшить начальное среднее колебательное число, улучшить эффективность охлаждения за счёт малого параметра Лэмба-Дике и уменьшить шумы источника радиочастотного потенциала, был спроектирован и собран резонансный трансформатор с добротностью Q = 895.

На данный момент готова лазерная система для фотоионизации магния. Дальнейшими планами по работе над данным проектом является селективная загрузка ионов ²⁵Mg⁺ в ловушку и проведение эксперимента по рамановскому охлаждению.

Список литературы

[1] Shor P. W. Algorithms for quantum computation: Discrete logarithms and factoring //Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on. – Ieee, 1994. – C. 124-134.

[2] Deutsch D. D. Deutsch, Proc. R. Soc. London, Ser. A 425, 73 (1989) //Proc. R.
 Soc. London, Ser. A. – 1989. – T. 425. – C. 73.

[3] Loss D., DiVincenzo D. P. Quantum computation with quantum dots //Physical Review A. – 1998. – T. 57. – N_{2} . 1. – C. 120.

[4] Blais A., Zagoskin A. M. Operation of universal gates in a solid-state quantum computer based on clean Josephson junctions between d-wave superconductors //Physical Review A. $-2000. - T. 61. - N_{\odot}. 4. - C. 042308.$

[5] Cirac J. I., Zoller P. Quantum computations with cold trapped ions //Physical review letters. $-1995. - T. 74. - N_{2}. 20. - C. 4091.$

[6] Langer C. et al. Long-lived qubit memory using atomic ions //Physical review letters. $-2005. - T. 95. - N_{\odot}. 6. - C. 060502.$

[7] Debnath S. et al. Demonstration of a small programmable quantum computer with atomic qubits //Nature. – 2016. – T. 536. – No. 7614. – C. 63.

[8] Eschner J. et al. Laser cooling of trapped ions //JOSA B. – 2003. – T. 20. – №.
5. – C. 1003-1015.

[9] Teufel J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state //Nature. – 2011. – T. 475. – №. 7356. – C. 359.

[10] Castin Y., Wallis H., Dalibard J. Limit of Doppler cooling //JOSA B. – 1989.
 – T. 6. – №. 11. – C. 2046-2057.

[11] Hemmerling B. et al. A single laser system for ground-state cooling of 25 Mg+//Applied Physics B. - 2011. - T. 104. - No. 3. - C. 583-590.

[12] Abramowitz M. Stegun, 1. A., 1972 //Handbook of mathematical functions. –
1967. – C. 771-802.

[13] Leibfried D. et al. Quantum dynamics of single trapped ions //Reviews of Modern Physics. $-2003. - T. 75. - N_{\odot}. 1. - C. 281.$

[14] Raimond J. M., Brune M., Haroche S. Manipulating quantum entanglement with atoms and photons in a cavity //Reviews of Modern Physics. $-2001. - T. 73. - N_{\odot}. 3. - C. 565.$

[15] Happer W. Optical pumping //Reviews of Modern Physics. – 1972. – T. 44. –
№. 2. – C. 169.

[16] Chen J. S. et al. Sympathetic Ground State Cooling and Time-Dilation Shifts in an Al 27+ Optical Clock //Physical review letters. $-2017. - T. 118. - N_{\odot}. 5. - C.$ 053002.

[17] Che H. et al. Efficient Raman sideband cooling of trapped ions to their motional ground state //Physical Review A. $-2017. - T. 96. - N_{2}. 1. - C. 013417.$

[18] Diedrich F. et al. Laser cooling to the zero-point energy of motion //Physical Review Letters. $-1989. - T. 62. - N_{2}. 4. - C. 403.$

[19] Dotsenko I. Raman spectroscopy of single atoms //Diplom Theses, Bonn University. – 2002.

[20] Wineland D. J. et al. Experimental primer on the trapped ion quantum computer. – National Institute of Standards and Technology Boulder United States, 1998.

[21] Medhurst R. G. HF resistance and self-capacitance of single-layer solenoids //Wireless Engineer. – 1947. – T. 24.

[22] Siverns J. D. et al. On the application of radio frequency voltages to ion traps via helical resonators //Applied Physics B. -2012. -T. 107. $-N_{2}$. 4. -C. 921-934.